Let, X be the age of the selected student.
Consider, the age of the student selected can be 14, 17, 15, 21, 19, 16, 18, 20.
So, the age of the selected student X can be 14, 15, 16, 17, 18, 19, 20.
Consider X be the difference between the number draw a table for the different sample space:
X | Number of students | P( X ) |
14 | 2 | 2 15 |
15 | 1 | 1 15 |
16 | 2 | 2 15 |
17 | 3 | 3 15 |
18 | 1 | 1 15 |
19 | 2 | 2 15 |
20 | 3 | 3 15 |
21 | 1 | 1 15 |
So the probability distribution is:
X | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
P( X ) | 2 15 | 1 15 | 2 15 | 3 15 | 1 15 | 2 15 | 3 15 | 1 15 |
The expression of the variance is,
Var( X )=E( X 2 )− [ E( X ) ] 2 (1)
Here, the mean is given by,
E( X )= ∑ i=1 n X i P i =( 14× 2 15 )+( 15× 1 15 )+( 16× 2 15 )+( 17× 3 15 )+( 18× 1 15 )+( 19× 2 15 ) +( 20× 3 15 )+( 21× 1 15 ) = 263 15 =17.53
Calculate the value of E( X 2 ),
E( X 2 )= ∑ i=1 n X i 2 P i =( 14 2 × 2 15 )+( 15 2 × 1 15 )+( 16 2 × 2 15 )+( 17 2 × 3 15 )+( 18 2 × 1 15 )+( 19 2 × 2 15 ) +( 20 2 × 3 15 )+( 21 2 × 1 15 ) = 4683 15
Substitute the values in equation (1),
Var( X )=E( X 2 )− [ E( X ) ] 2 = 4683 15 − ( 17.53 ) 2 =4.78
And standard deviation σ x is,
σ x = Var( x ) = 4.78 =2.18
Thus, the variance is 4.78 and standard deviation is 2.18.