Given: Total no students =15
Whose ages are 14,17,15,14,21,17,19,20,
16,18,20,17,
16,19 and 20 years.
Let X: The age of student selected
The age of student selected can be
14,17,15,21,19,16,18,20
So,X can have the value
14,15,16,17,18,19,20,21
From given data we can draw a table,
X1415161718192021F21231231
Now, probabilities of ages of each student are
P(X=14)=215
P(X=15)=115
P(X=16)=215
P(X=17)=315
P(X=18)=115
P(X=19)=215
P(X=20)=315
P(X=21)=115
Hence, the required probability distribution is,
X1415161718192021P(X)215115215315115215315115
The Mean of X is given by
μ=E(X)=∑ni=1xipi
⇒E(X)=14×215+15×115+16×215+
17×315+18×115+19×215+
20×315+21×115
⇒E(X)=28+15+32+51+18+38+60+2115
⇒E(X)=26315
∴E(X)=17.53
We know that variance of X is
Var(X)=E(X2)−(E(X))2 ... (1)
Here, E(X)=17.53
Finding E(X2)
E(X2)=∑ni=1x2i⋅p(xi)
⇒E(X2)=(14)2×215+(15)2×115
+(16)2×215+(17)2×315+(18)2×115
+(19)2×215+(20)2×315+(21)2×115
⇒E(X2)=392+225+512+867+324+722+1200+44115
⇒E(X2)=468315
∴E(X2)=312.2
Now putting the value of E(X2)&E(X) in (1)
⇒Var(X)=312.2−(17.53)2
∴Var(X)=312.2−307.417≈4.78
∴Standard deviation =√(Var(X))
=√4.78
∴ Standard deviation =2.19