The correct option is
B A∩(B′∪C′)=B′∩C′A={(T,T,T)}, B={(H,T,T),(T,H,T),(T,T,H)} and C={(H,H,T),(T,H,H),(H,T,H),(H,H,H)}
∴(A∪B)∩(A∪C)
={(T,T,T),(H,T,T),(T,H,T),(T,T,H)}∩{(T,T,T),(H,H,T),(T,H,H),(H,T,H),(H,H,H)}
={(T,T,T)}=A
∴(A∩B′)∪(A∩C′)
={(H,H,T),(T,H,H),(H,T,H),(H,H,H)}∪{(T,T,T),(H,T,T),(T,H,T),(T,T,H)}=B′∪C′
∴A∩B∩(B′∪C′)
={(T,T,T)}∩{(H,T,T),(T,H,T),(T,T,H)}∩{(T,T,T),(H,T,T)
,(T,H,T),(T,T,H),(H,H,T),(T,H,H),(H,T,H),(H,H,H)}
=ϕ
∴A∩(B′∪C′)
={(T,T,T)}∩{(H,H,T),(T,H,H),(H,T,H),(H,H,H),(T,T,T),(H,T,T),(T,H,T),(T,T,H)}
={(T,T,T)}=A