The correct option is B z is a purely complex number
Let β be a complex number denoted by,
β=iz−az−i⇒β=i(x+iy)−ax+iy−i⇒β=−(y+a)+ixx+i(y−1)
β=−(y+a)+ixx+i(y−1)×x−i(y−1)x−i(y−1)
⇒β=−x(1+a)+i[(y−1)(y+a)+x2]x2+(y−1)2
If Im(β)=|β| then,
Re(β)=0
⇒Re(β)=−x(1+a)x2+(y−1)2=0⇒x(1+a)=0
a≠−1, ∵a∈R+
∴x=0
Hence, the complex number is z=iy, which is purely complex.