A complex number z is rotated in anticlockwise direction by an angle α and we get z' and if the same complex number z is rotated by an angle α in clockwise direction and we get z", then
z′=zeiα
(1)
z′′=ze−iα (2)
∴z′z′′=z2
⇒z′,z,z′′ are in G.P.
Also, (z′z)2+(z′′z)2=2cos2α
⇒z′2+z′′2=2z2cos2α
=2z2(2cos2α−1)
or z′2+z′′2+2z2=4z2cos2α
or
z′2+z′′2+2z′z′′=4z2cos2α
or (z′+z′′)2=4z2cos2α
or z′+z′′=2zcosα