A complex number z is said to be unimodular, if |z| eq1. If z1 and z2 are complex numbers such that z1−2z22−z1−z2 is unimodular and z2 is not unimodular.
Then, the point z1 lies on a
We have,
∣∣∣z1−2z22−z1¯¯¯¯¯z2∣∣∣=1
⇒|z1−2z2|=∣∣2−z1¯¯¯¯¯z2∣∣
On squaring both side and we get,
(z1−2z2)(¯¯¯¯¯z1−2¯¯¯¯¯z2)=(2−z1¯¯¯¯¯z2)(2−¯¯¯¯¯z1z2)
⇒z1¯¯¯¯¯z1−2z2¯¯¯¯¯z1−2z1¯¯¯¯¯z2+4¯¯¯¯¯z2z2=4−2z2¯¯¯¯¯z1−2z1¯¯¯¯¯z2+¯¯¯¯¯z1z2z1¯¯¯¯¯z2
⇒|z1|2+4|z2|2=4+|z1|2|z2|2
⇒|z1|2−|z1|2|z2|2+4|z2|2−4=0
⇒|z1|2(1−|z2|2)−4(1−|z2|2)=0
⇒(1−|z2|2)(|z1|2−4)=0
⇒|z1|2−4=0,1−|z2|2=0
⇒|z1|=2,|z2|=1
Now,
|z2|≠0
Then
|z1|=2
Hence, the radius of circle is 2.
This is the answer.