The correct option is
D heat flow through C = heat flow through B + heat flow through DThermal resistance
R=R=1KA
∴RA=L(2K)(4LW) (Here w = width)
=18Kw′
RB=4L3k(LW)=43Kw
RC=4L(4K)(Lw)=12Kw
RD=4L(5K)(Lw)=45Kw
RE=L(6K)(Lw)=16Kw
RA:RB:RC:RD:RE
=15:160:60:96:12
So, let us write,
RA=15 R, RB=160 R etc and draq
a simple electrical circuit as shown in figure
H = Heat current = Rate of heat flow.
HA=HE=H (let)
In parallel current distributes in inverse ratio of resistance.
∴HB:HC:HD=1RB:1RC:1RD
=1160:160:196
=9:24:15
∴HB=(99+24+15)H=316HHC=(249+24+15)H=12Hand HD=(159+24+15)H=516H
Temperature difference (let us call it T)
= (Heat current) × ( Thermal resistance)
TA=HARA=(H)(15R)=15HR
TB=HBRB=(316H)(160 R)=30 HR
TC=HCRC=(12H)(60 R)=30 HR
TD=HDRD=(516H)(96 R)=30 HR
TE=HERE=(H)(12 R)=12 HR
Here, TE is minimum. Therefore option (c) is also correct.
∴ Correct options are (a), (c), and (d).