The correct option is A 20 cm
For real image in concave mirror,
u=−u1; v=−2u1; f=−20 cm
(∵m=−2 for real image)
Substituting above values in mirror formula , 1v+1u=1f
we get, 1−2u1−1u1=−120
⇒u1=30 cm
For virtual image in concave mirror:
u=−u2; v=2u2; f=−20 cm
(∵m=2 for virtual image)
Using the given data in mirror formula, we get
12u2−1u2=−120⇒u2=10 cm
Therefore, distance between two positions of the object is u=(u1−u2)=30 cm−10 cm=20 cm.
Hence, option (a) is the correct answer.