A continuous function f:R→R satisfies the equation f(x)=x+∫x0f(t)dt. Which of the following options is true?
f(x)=x+∫x0f(t)dt
Differentiating both sides using Newtons Leibniz rule
f′(x)=1+f(x)
Let dtdx=f′(x)
∴dtdx=1+t⇒dt1+t=dx⇒∫dt1+t=∫dx⇒ln(1+t)=x⇒ln(1+f(x))=x⇒1+f(x)=ex⇒f(x)=ex−1
Option (C) satisfies our function as
f(x+y)=ex+y−1f(x)+f(y)+f(x)f(y)=ex−1+ey−1+(ex−1)(ey−1)f(x)+f(y)+f(x)f(y)=ex+y−1
Hence, option C is correct.