Given:
Refractive index of the surrounding, = n1
Refractive index the lens, = n2
Using lens maker's formula,
1f=( n2n1−1 ) ( 1R1− 1R2 )
focal length when lens is placed in air:
n1=1
n2=2
1f1=( n2n1−1 ) ( 1R1− 1R2 )
Substituting the values
1f1=( 21−1 ) ( 1R1− 1R2 )
1f1=(1) ( 1R1− 1R2 ) ......(1)
focal length when lens is placed in water:
n1=1.33
n2=2
1f2=( n2n1−1 ) ( 1R1− 1R2 )
Substituting the values
1f2=( 21.33−1 ) ( 1R1− 1R2 )
1f2=(0.503) ( 1R1− 1R2 ) .......(2)
Dividing eq(1) and eq(2)
1f1 ×f21= 10.503
f21=f10.503
f2≈2 f1
There will be an increase in focal length of the convex lens. This is because the refractive index of glass with respect to water is less than the refractive index of glass with respect to air.