Let the land allocated to crop X be x hector and land allocated to crop Y be y hector.
Given: Herbicides used for cropX=20 litres per hectare
Herbicides used for cropY=10 litres per hectare
Maximum quantity of herbicide=800 litres
∴20x+10y≤800
2x+y<800
The total land available =50 hectare
∴x+y≤50
As we count to maximise the profit
Hence, the function used here is Maximise z
Profit from Crop x= Rs.10500per hectare
Profit from Crop y= Rs.9000 per hectare
Maximize z:10500x+9000y
Combining all constraints 2xy≤80
x+y≤50
x,y≥0
i)
x+y≤50ii) 2x+y≤80 Corner Points | Value of z |
(0,50) | 450000 |
(30,20) | 495000 → maximum |
(40,0) | 420000 |
(0,0) | 0 |
Hence the profit will be maximum of
Crop x=30 hectare
Crop y=20 hectare
Maximum profit = Rs.4,95,000