wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a cos A + b cos B + c cos C = 2b sin A sin C

Open in App
Solution

By sine rule, we know thatasin A=bsin B=csin C=k saya=k sin A, b=k sin B, c=k sin CNow,LHS=a cos A+b cos B+c cos C =k sin A cos A+k sin B cos B+k sin C cos C =k2 2 sin A cos A+2 sin B cos B+2 sin C cos C =k2 sin 2A+sin 2B+2 sin C cos C =k2 2 sin 2A+2B2cos2A-2B2+2 sin C cos C =k2 2 sin A+B cos A-B+2 sin C cos C =k2 2 sin π-C cos A-B+2 sin C cos C A+B+C=π =k2 2 sin C cos A-B+2 sin C cos C =k2× 2 sin Ccos A-B+cos C =k sin C2 cos A-B+C2cos A-B-C2 =k sin C2 cos π-B-B2cos B+C-A2 A+B+C=π =k sin C2 cos π-2B2cos π-2A2 A+B+C=π =k sin C2 cos π2-Bcos π2-A =2k sin Csin B sin A =2 k sin B sin A sin C =2b sin A sin C =RHS LHS=RHS

Hence, a cos A + b cos B + c cos C = 2b sin A sin C.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon