wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a (cosBcosC+cosA)
=b (cosCcosA+cosB)
=c (cosAcosB+cosC).

Open in App
Solution

a(cosBcosC+cosA)
=a{cosBcosCcos(B+C)}
=a{cosBcosCcosBcosC+sinBsinC}
Similarly b(cosCcosA+cosB)
=c(cosAcosB+cosC)
$=k\sin { A } \sin { B } \sia(cosBcosC+cosA)
=a{cosBcosCcos(B+C)}
=a{cosBcosCcosBcosC+sinBsinC}
Similarly b(cosCcosA+cosB)
=c(cosAcosB+cosC)
=ksinAsinBsinCa(cosBcosC+cosA)
=a{cosBcosCcos(B+C)}
=a{cosBcosCcosBcosC+sinBsinC}
Similarly b(cosCcosA+cosB)
=c(cosAcosB+cosC)
k=sinA sinB sinC nC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon