Area of the triangle having coordinates (acosϕ1,bsinϕ1),(acosϕ2,bsinϕ2),(acosϕ3,bsinϕ3) is given by
12∣∣∣acosϕ1acosϕ2acosϕ3acosϕ1bsinϕ1bsinϕ2bsinϕ3bsinϕ1∣∣∣
=12×(acosϕ1bsinϕ2+acosϕ2bsinϕ3+acosϕ3bsinϕ1−acosϕ2bsinϕ1−acosϕ3bsinϕ2−acosϕ1bsinϕ3)
=ab2×(sin(ϕ2−ϕ1)+sin(ϕ3−ϕ2)+sin(ϕ1−ϕ3))