The correct option is A (x+2)(x2−x+1)
Let the cubic function f(x)=Ax3+Bx2+Cx+D
f′(x)=3Ax2+2Bx+c
f′(x)=3Ax2+2Bx+C
From the given data ,
f(−2)=0⇒−8A+4B−2C+D=0.....{1}
f′(1)=3A+2B+C=0......{2}
f′(13)=A3+2b3+C=0......{3}
∫1−1f(x)dx=2(B3+D)=143.....{4}
By solving {1} {2} {3} and {4} we get ,
A = 1 , B = 1 , C = - 1 , D = 2
ie , f(x)=x3+x2−x+2=(x+2)(x2−x+1).....Ans