The correct options are
B If 1∫−1f(x) dx=143, then f(x)=x3+x2−x+2
D If ∫1−1f(x) dx=103, then f(x)=17(5x3+5x2−5x+10)
As the function has relative minimum/maximum at x=−1 and x=13
So, f′(x)=a(x+1)(x−13)
where a is constant.
⇒f′(x)=a(x2+2x3−13)
⇒f(x)=a(x33+x23−x3)+b
where b is constant of integration.
Now f(−2)=0
⇒−8a3+4a3+2a3+b=0
⇒b=2a3
⇒f(x)=a3(x3+x2−x+2)
When 1∫−1f(x) dx=143
⇒a31∫−1(x3+x2−x+2) dx=143
⇒a1∫−1(x2+2)=14
⇒2a1∫0(x2+2)=14
⇒2a(13+2)=14
⇒143a=14⇒a=3
So the function will be
f(x)=x3+x2−x+2
Similarly, when 1∫−1f(x) dx=103
⇒143a=10
⇒a=157
So the function will be
f(x)=17(5x3+5x2−5x+10)
Similarly, remaining two options can be found to be incorrect.