Let the length and breadth of the base be x and the height of the godown be y. Let C be the cost of constructing the godown and V be the given volume. So, V=x2y⇒xy=Vx....(i)
And, C=(3x2+4xy)×k, where k is cost incurred for walls.
∴C=(3x2+4Vx)×k [By (i)]
Now dCdx=(6x−4Vx2)×k and, d2Cdx2=(6+8Vx3)×k
For maximum and/or minimum value of C, dCdx=0⇒6x−4Vx2=0
⇒x3=2V3∴x=(2V3)13
When x3=2V3, then d2Cdx2=(6+8×32)×k=18k>0(∵k is cost, so k > 0)
So, C is minimum when x=(2V3)13
Now, V=x2y⇒3x32=x2y⇒x2(3x2−y)=0⇒3x2=y∴y=32(2V3)13
Hence the dimensions of the godown are (2V3)13×(2V3)13×32(2V3)13.