Let t= thickness of the wall of the cylinder. Then,
J=I2πRt along z axis. The magnetic field due to this at a distance r
(R−t2<r<R+t2), is given by,
Bφ(2πr)=μ0I2πRtπ{r2−(R−t2)2}
or, Bφ=μ0I4πRrt{r2−(R−t2)2}
Now, →F=∫→J×→BdV
and p=Fr2πRL=12πRL∫R+t2R−t2μ0I28π2R2t2r{r2−(R−t2)2}×2πrLdr
=μ0I28π2R3t2∫R+t2R−t2{r2−(R−t2)2}dr=μ0I28π2R3t2⎡⎢
⎢
⎢
⎢
⎢⎣(R+t2)3−(R−t2)33−(R−t2)2t⎤⎥
⎥
⎥
⎥
⎥⎦
=μ0I28π2R3t[Rt+0(t2)]≈μ0I28π2R2