Let the point of contact be P(x,y)Equation of tangent:y1−y=m(x1−x)⇒mx1−y1−mx+y=0Perpendicular distance from (0,0)=x⇒∣∣∣0−0−mx+y√m2+1∣∣∣=x⇒y2−x2=2mxy⇒dydx=y2−x22xy [∵m=dydx]Put y=vx and proceed,v+xdvdx=v2−12v∫2vv2+1dv=−∫dxx⇒ln(v2+1)=−lnx+lnc⇒v2+1=cx⇒y2+x2=cx [∵y=vx]Now, it passes through (1,2)⇒c=5⇒y2+x2−5x=0For x-intercept, put y=0⇒x=0,5⇒Length of x-intercept=5For y-intercept, put x=0⇒y=0⇒Length of y-intercept=0∴Sum of length of both intercept=5