A curve is represented parametrically by the equations x=f(t)=aln(bt) and y=g(t)=b−ln(at);a,b>0 and a≠1,b≠1 where t∈R.
The value of f(t)f′(t)⋅f′′(−t)f′(−t)+f(−t)f′(−t)⋅f′′(t)f′(t)∀t∈R, equal to
A
−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
−4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2 x=f(t)=aln(bt)⇒x=atlnb=(alnb)t y=g(t)=b−ln(at)⇒y=b−tlna=(blna)−t⇒y=(alnb)−t⇒y=a−tlnb=1x⇒xy=1 ⇒fg=1⇒fg′+f′g=0⇒fg′′+f′g′+f′g′+f′′g=0⇒fg′′+f′′g=−2f′g′⋯(1)
We know that, f(−t)=g(t)⇒g′(t)=−f′(−t)⇒g′′(t)=f′′(−t)
Putting in equation (1), f(t)f′′(−t)+f′′(t)f(−t)=2f′(t)f′(−t)⇒f(t)f′(t)⋅f′′(−t)f′(−t)+f(−t)f′(−t)⋅f′′(t)f′(t)=2