The correct option is D (2e,0)
Given curve is x=t+eat; y=−t+eat
Let the curve touches x− axis at (x1,0), then the slope of the tangent at this point is 0,
Now,
dxdt=1+aeatdydt=−1+aeat⇒dydx=−1+aeat1+aeat
At (x1,0),
−1+aeat11+aeat1=0⇒aeat1=1⋯(1)
Also,
y=0⇒−t1+eat1=0⇒eat1=t1
Using equation (1), we get
⇒t1=1a
Again using equation (1), we get
ae=1⇒a=1e⇒t1=e⇒x1=t1+eat1∴x1=e+e=2e
Hence, the point of contact is (2e,0)