Let tangent is drawn at point (x,y). Then the point on y− axis where tangent meets, is (0,y−xdydx).
The given mid point will be (x2,y−x2dydx)
According to given condition,
x2=y−x2dydx⇒dydx=2yx−1
Putting y=vx, we get
xdvdx=v−1⇒dvv−1=dxx
On integrating both sides, we have:
⇒ln∣∣yx−1∣∣=ln|x|+C
∵y(1)=0,C=0
⇒y=x−x2 (only)
∴a=1,b=−1,c=0