The correct option is A y2=2x+1−e2x
Equation of normal at P(x,y) is
Y−y=−dxdy(X−x)
This meets the x−axis at A(x+ydydx,0)
Mid point of AP is (x+12ydydx,y2), which lies on the parabola 2y2=x.
∴2×y24=x+12ydydx
⇒y2=2x+ydydx
Put y2=t⇒ydydx=12dtdx
We get dtdx−2t=−4x (which is linear)
I.F.=e−2∫dx=e−2x
∴ Solution is
te−2x=−4∫xe−2xdx+c
On integrating by parts, we have:
te−2x=−4[xe−2x−2−∫−12e−2xdx]+c
⇒y2e−2x=2xe−2x+e−2x+c
Since the curve passes through origin, the value of c=−1
∴y2=2x+1−e2x is the equation of the required curve.