AB=1,BD=sqrt3,OA=OB=OD=1
The given circle of radius 1 is also circum-circle of
△ABD.
∴R=1 for △ADB∴asinA=2R
∴√3sinA=2R=2∴sinA=√32∴A=600
and hence C=1200.
Also by cosine rule on △ABD
(√3)2=12+x2−2xcos600
or x2−x−2=0
∴(x−2)(x+1)=0∴x=2
Now the equation reduced to part (a) above.
△=△1+△2
⇒3√34=12(1.2.sin600)+12(c.dsin1200)
or 3√34=√32+√34cd
∴cd=1orc2d2=1
Also by cosine rule on △BCD we, have
(√3)2=c2+d2−2cdcos1200=c2+d2+cd
∴c2+d2=2ascd=1
∴c2andd2 are the roots of t2−2t+1=0
∴c2=d2=1
∴BC=1CD and AD=x=2.