Let R be the radius of sphere and r and h be the radius and height of the cylinder respectively
Let α be the angle between radius and axis of cylinder. Then
r=Rsinα & h=2Rcosα
V=πr2h=π(Rsinα)22Rcosα=2πR3sin2αcosα
dVdα=0⇒2πR3[sin3α−2sinαcos2α]=0
2πR3≠0∴sin3α−2sinαcos2α=0⇒sin3α=2sinαcos2α
⇒tan2α=2⇒tanα=√2⇒α=54.74°
∴r=Rsin54.74°=0.816R
h=2Rcos54.74°=1.155R
Volume of cylinder=π×(0.816R)2×1.155R=2.42R3
Volume of sphere=43πR3=43×227×R3=4.20R3
Hence, value of sphere is (4.20R3−2.42R3=1.78R3) greater than that of cylinder.