(a) DA bisects ∠BAC and ∠B=∠C. Prove that ΔBDA≅ΔCDA.
(b) If these triangles are congruent, choose the property by which they are congruent.
[4 MARKS]
Each Part: 2 Marks
(a)
In ΔBDA and ΔCDA
∠B=∠C [Given]
∠BAD=∠CAD [Given, DA is an angle bisector ]
AD=AD [Common side]
⇒ΔBDA≅ΔCDA [ AAS criteria]
(b) we observe that in the given figures, there are no pairs of congruent sides. Since all of the congruency theorems call for at least one pair of congruent sides, there isn't enough information to prove that the triangles are congruent. Two triangles cannot be proved congruent just by AAA because triangles with same angles can have different sizes.