A derivable function f:R+→R satisfies the condition f(x)−f(y)≥lnxy+x−y;∀x,y∈R+. If g denotes the derivative of f then the value of the sum ∑100n=1g(1n) is 1030k.Find the value of k.
Open in App
Solution
RHDf′(x)=limh→0+f(x+h)−f(x)h ≥limh→0+ln(x+hx)+x+h−xh ≥limh→0+ln(1+hx)h+1≥1x+1.......(i) LHDf′(x)=limh→0−f(x−h)−f(x)−h ≤limh→0−ln(x+hx)+x−h−xh ≤limh→0−ln(1−hx)−h+1≤1x+1.......(ii) From (i) and (ii) ⇒f′(x)=1x+1 ∴∑100n=1g(1n)=g(11)+g(12)+......g(1100)=(1+2+3+....+100)+100=5150 ⇒k=5