wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A die is thrown 6 times. If 'getting an odd number' is a success, what is the probability of
(i) 5 successes ?
(ii) at least 5 successes ?
(iii) at most 5 successes ?

Open in App
Solution

The repeated tosses of a die are Bernoulli trials. Let X denote the number of successes of getting odd numbers in an experiment of 6 trials.
Probability of getting an odd number in a single throw of a die is, p=36=12
q=1p=12
X has a binomial distribution.
Therefore, P(X=x)=nCnxqnxpx, where x=0,1,2....n
=6Cx(12)6x(12)x
(i) P(5successes)=P(X=5)
=6C5(12)6
=6164
=332

(ii)P(atleast5successes)=P(X5)
=P(X=5)+P(X=6)
=6C5(12)6+6C6(12)6
=6164+1164
=764

(iii) P(atmost5successes)=P(X5)
=1P(X>5)
=1P(X=6)
=16C6(12)6
=1164
=6364

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon