The correct option is C f′′(π2)=e
f(x)=x∫0(f(t)cost−cos(t−x))dt=x∫0f(t)cost dt−x∫0cos(−t)dt ⎡⎢⎣∵a∫0f(x)dx=a∫0f(a−x)dx⎤⎥⎦
⇒f(x)=x∫0f(t)cost dt−sinx
Differentiating both sides w.r.t. x, we get
f′(x)=f(x)cosx−cosx
Let f(x)=y; f′(x)=dydx
Then, dydx−ycosx=−cosx
I.F.=e−∫cosx dx=e−sinx
Hence, y⋅e−sinx=∫−e−sinxcosx dx
⇒y⋅e−sinx=C+e−sinx
⇒y=Cesinx+1
If x=0, then y=0 (from the given relation)
⇒C=−1
Hence, f(x)=1−esinx
Now, minimum value =(1−e) when x=π2
and maximum value =(1−e−1) when x=−π2
f′(x)=−esinxcosx
f′(0)=−1
f′′(x)=−[cos2x⋅esinx−esinx⋅sinx]f′′(π2)=e