The correct option is D f′′(π2)=e
f(x)=x∫0(f(t)cost−cos(t−x))dt⇒f(x)=x∫0f(t)cost dt−x∫0cos(t−x)dt⇒f(x)=x∫0f(t)cost dt−[sin(t−x)]x0⇒f(x)=x∫0f(t)cost dt−sinx⇒f′(x)=f(x)cosx−cosx
We know that f(0)=0
⇒f′(0)=−1
f′(x)=f(x)cosx−cosx
Let y=f(x)
⇒dydx=cosx(y−1)⇒∫dyy−1=∫cosx dx⇒ln|y−1|=sinx+c⇒|y−1|=Cesinx, C=ec
⇒y−1=±Cesinx, C=ec
y(0)=0
∴f(x)=1−esinx⇒f′(x)=−esinxcosx
For maxima and minima,
esinxcosx=0⇒cosx=0⇒x=(2n+1)π2
f′′(x)=−esinxcos2x+esinxsinx
At x=π2
f′′(π2)=e>0
So, minimum value of f is,
f(π2)=1−e
f′′(3π2)=−e−1<0
So, maximum value of f is,
f(3π2)=1−e−1