From (1) and (2), we have
2f(x)+3x−1=12f(x)−3(x−1)4
⇒f(x)=−2x−1−x−12
⇒f(x)=−(2x−1+x−12)
For maximum and minimum, f′(x)=0
f′(x)=2(x−1)2−12=0
⇒x=1±2
⇒x=−1,3
and f′′(x)=−4(x−1)3
For x=−1,f′′(x)=12>0
∴x=−1=b2 is point of local minimum.
f(−1)=2
For x=3,f′′(x)=−12<0
∴x=3=b1 is point of local maximum.
f(3)=−2