The correct option is D n3
For first case,
Initial angular velocity, ωi=ωo
Final angular velocity, ωf=ωo2
Since, torque is constant. Therefore,
α= constant and also negative in nature as torque is retarding the motion.
We can apply,
⇒ω2f=ω2i−2αΔθ
⇒(ωo2)2=ω2o−2αΔθ
⇒Δθ=3ω2o8α
So, number of rotations,
n=3ω2o8α2π=3ω2o16πα
[one rotation =2π]
α=3ω2o16πn ..............(1)
Now,
For second case,
Initial angular velocity, ωi=ωo2
Final angular velocity, ωf=0
We can apply,
⇒ω2f=ω2i−2αΔθ
⇒0=(ωo2)2−2αΔθ′
⇒2αΔθ′=ω2o4
⇒2×3ω2o16πn×Δθ′=ω2o4
[from (1)]
⇒Δθ′=2πn3
So, number of rotations,
n′=2πn32π=n3