(a) Discuss the nature of the roots of the equations 4ax2+3bx+2c=0 where a,b,cϵR and are connected by the relation a+b+c=0. (b) If the roots of the equation [a2+291−b)]x2+2a(1+b)x+2b(b−1)+a2=0 be equal, then prove that a2=4b.
Open in App
Solution
(a) Δ=9b2−32ac=9b2+32a(a+b) =9b2+32ab+32a2=b2+8(b2+4ab+4a2) =b2+8(b+2a)2=+ive∴ Real (b) Δ=0 ⇒4a2(1+b)2−4[a2+2b(b−1][a2−2(b−1)]=0 or a2{(b−1)2+4b}−{a4+2a2(b2−2b+1)−4b(b−1)2}=0 or a4+2a2(b−1)2−4b(b−1)2−a2(b−1)2−4ba2=0 or a2(a2−4b)+(b−1)2{a2−4b}=0 or (a2−4b)[a2+(b−1)2]=0 ∴a2−4b=0 as the other factor cannot be zero.