The correct option is A Both A and R are true and R is the correct explanation of A
∫dxa+bcosx
=∫dxa+b(1−tan2x/21+tan2x/2)
=∫sec2x/2dx(a+b)+(a−b)tan2x/2
=∫sec2x/2dx(a−b)[a+ba−b+tan2x/2]
Put tan(x/2)=t
12sec2(x/2)dx=dt
=∫2dt(a−b)[(√a+ba−b)2+t2]
=2(a−b)√a+ba−btan−1(t√a+ba−b)+c
∫dxa+bcosx=2√a2−b2tan−1[√a−ba+btanx2]+c
A:∫13+2cosxdx=2√5tan−1(1√5tanx2)+c
For assertion, put a=3,b=2(a>b)
∫13+2cosxdx=2√5tan−1(1√5tanx2)+c
Hence, option 'A' is correct.