The correct option is D Both A and R are true and R is the correct explanation of A
∫dxa+bsinx
=∫dxa+b2tan(x/2)1+tan2x/2
=∫sec2x/2dxa+atan2x/2+2btan(x/2)
Substituting tan(x/2)=t
12sec2(x/2)dx=dt
=∫2dta+at2+2bt
=2a∫dt1+t2+2bat+b2a2−b2a2
=2a∫dt(t+ba)2−(√b2−a2a)2
=1√b2−a2log|t+ba−√b2−a2at+ba+√b2−a2a|
=1√b2−a2log∣∣
∣∣atan(x/2)+b−√b2−a2atan(x/2)+b+√b2−a2∣∣
∣∣+c
∫dxa+bsinx=1√b2−a2log∣∣
∣∣atan(x/2)+b−√b2−a2atan(x/2)+b+√b2−a2∣∣
∣∣+c
Thus, reason is correct .
A:∫14+5sinxdx=13log∣∣∣2tan(x/2)+12tan(x/2)+4∣∣∣+c
Substitutea=4,b=5
∫14+5sinxdx = 13log∣∣∣2tan(x/2)+12tan(x/2)+4∣∣∣+c
Thus, assertion is true and reason is correct explanation for assertion
Hence, option 'A' is correct.