The correct option is C Both A and R are true and R is the correct explanation of A
∫dxa+bsinxa>b
=∫dxa+b2tan(x/2)1+tan2x/2
=∫sec2x/2dxa+atan2x/2+2btan(x/2)
Put tan(x/2)=t
12sec2(x/2)dx=dt
=∫2dta+at2+2bt
=2a∫dt1+t2+2bat+b2a2−b2a2
=2a∫dt(t+ba)2+(√a2−b2a)2
=2√a2−b2tan−1⎡⎢
⎢
⎢
⎢⎣t+ba√a2−b2a⎤⎥
⎥
⎥
⎥⎦+c
=2√a2−b2tan−1[b+atan(x/2)√a2−b2]+c
∫dxa+bsinx=2√a2−b2tan−1[b+atan(x/2)√a2−b2]+ca>b
Hence, reason is correct
A:∫15+4sinxdx=23tan−1(4+5tan(x/2)3)+c
Put a=5,b=4(a>b)
∫15+4sinxdx=23tan−1(4+5tan(x/2)3)+c
Hence, assertion is correct and reason is the correct explanation for assertion