A factor of a2−2ab+b2−c2 is ___________.
a−b−c
a2−2ab+b2−c2=a2−ab−ab+b2−c2=a(a−b)−b(a−b) –c2
=(a−b)(a−b) − c2
=(a−b)2 – c2
Now, using the identity x2−y2=(x+y)(x−y) we get
(a−b)2–c2 = [(a−b)+c][(a−b)−c]
Hence, the factors of (a2−2ab+b2−c2) are (a−b+c) and (a−b−c)