The correct option is B (12,54).
The given equation x2=y−1 represents a parabola with vertex at (0,1)
Let the co-ordinates of any point p on the curve y=1+x2be(h,1+h2).
Now dydx=2x=2h Tangent at P is y−(1+h2)=2h(x−h) or y−2xh=1−h2
Substituting x=0 , we get y=(1−h2)OL
Substituting x=1, we get y=1+2h−h2
∴Mis(1,1+2h−h2),N(1,0)
A=area of trapezium =12(OL+MN).ON =12[1−h2+12h−h2].1
A=(1+h−h2)
∴dAdh=1−2h=0
∴h=12 and d2Adh2=−2=−ive Hence max.
∴ Point P is (12.54).
Ans: B