Differentiating of equation (2) w.r. to x, we get dPdx=−x2+12x−11....(3) Now, dPdx=0⇒−x2+12x−11=0⇒x2−12x+11=0 ⇒x2−11x−x+11=0 ⇒x(x−11)−1(x−11)=0 ⇒(x−1)(x−11)=0⇒x=1,11
Again differentiating, we get d2Pdx2=12−2x....(4) at x=1,d2Pdx2=10⇒d2Pdx2>0 (Minimum value) at x=11,d2Pdx2=−10⇒d2Pdx2<0 (Maximum value)
Hence, the profit maximising level of output x=11.