(a) For any two non-zero complex numbers z1 and z2 if |z1+z2|=|z1|+|z2|, then prove that argz1−argz2 is zero. (b) Prove the above result if we have|z1−z2|=|z1|−|z2|
Open in App
Solution
(a) |z1+z2|=√r21+r22+2r1r2cos(θ1−θ2) and |z1−z2|=√r21+r22−2r1r2cos(θ1−θ2) If cos(θ1−θ2)=1 i.e. θ1−θ2=0 or arg z1− arg z2=0, then |z1+z2|=√r21+r22+2r1r2=r1+r2 |z1|+|z2| and |z1−z2|=r1−r2=|z1|−|z2|