Let us day we have a four digit number "abcd" where a,b,c,d are integers.
Given,
1000a+100b+10c+d=202(a+b+c+d)
⇒798a−102b−192c−201d=0⟶(1)
Also
(1000b+100a+10d+c)+(1000a+100b+10c+d)=3333
⇒1100b+1100a+11d+11c=3333
⇒100b+100a+c+d=303⟶(2)
Also, a=c and b=d
∴ Equation (1) reduces into,
(798a−192a)−102b−201b=0
⇒606a−303b=0
⇒2a=b⟶(3)
Also, equation (3) reduces into
(100a+a)+(100b+b)=303
⇒101(a+b)=303
⇒a+b=3⟶(4)
Combining equation (3) and (4) we get
∴ 3a=3
⇒a=1⇒c=1
b=2⇒d=2
∴ the four digit number is 1212.