A function f is continuous and differentiable for all x>0, such that f2(x)=x∫0f(t)cost2+sintdt and f(x)≠0,f(π)=ln2, then f(x) is
A
12ln(x+5cosx4)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12ln(42+cosx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12ln(4+2sinx)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2+cosx+sinx2+sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C12ln(4+2sinx) f2(x)=x∫0f(t)cost2+sintdt ⇒2f(x)f′(x)=f(x)cosx2+sinx Differentiating w.r.t. x using Leibnitz rule, ⇒2f′(x)=cosx2+sinx
[as f(x)≠0 ] ⇒2∫f′(x)dx=∫cosx2+sinxdx⇒2f(x)=loge(2+sinx)+logeC
Put x=π; we have f(π)=ln2 ∴2loge2=loge2+logeC⇒logeC=loge2⇒f(x)=12ln(4+2sinx)