(a) Given:
f (x) = x2
Range of f = R+ (Set of all real numbers greater than or equal to zero)
(b) Given:
f (x) = x2
⇒ x2 = 4
⇒ x = ± 2
∴ {x : f (x) = 4 } = { 2, 2}.
(c) { y : f (y) = 1}
⇒ f (y) = 1
It is clear that x2 = 1 but x2 ≥ 0 .
⇒ f (y) ≠ 1
∴ {y : f (y) = 1} = Φ