A function f:R→[1,∞) satisfies the equation f(xy)=f(x)f(y)−f(x)−f(y)+2. If f is differentiable on R−0 and f(2)=5,f′(x)=f(x)−1x.λ then λ =________
f′(x)=Itx→0 f(x+h)−f(x)h=Itx→0f{x(1+hx)}−f(x)h(x≠0 given)=Itx→0f(1+hx)−2hx.f(x)−1x
Putting x=1, y=2 in the given functional equation, f(1)=2
∴ f′(x)=f(x)−1x.Itx→0f(1+hx)−f(1)hx=f(x)−1x.f′(1)