A function f:R→R+ satisfying f(x+y)=f(x)f(y)∀x,y∈R,f(0)=1,f′(0)=2, then
A
loge3∫0[f(x)e−x]dx=loge(92) {[⋅] is greatest integer function}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→0[f(x)] does not exist {[⋅] is greatest integer function}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1∫0f(x)dx=e2−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0<f(x)≤1 if x∈(0,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Aloge3∫0[f(x)e−x]dx=loge(92) {[⋅] is greatest integer function} Blimx→0[f(x)] does not exist {[⋅] is greatest integer function} C1∫0f(x)dx=e2−12 f(x+y)=f(x)f(y)∀x,y∈R From the above equation, we can conclude that f(x)=eax where a is some constant. ⇒f′(x)=aeax ⇒2=ae0(∵f′(0)=2) ⇒a=2 ⇒f(x)=e2x
Alternate method : f(x+y)=f(x)f(y) Differentiating w.r.t x ⇒f′(x+y)(1+dydx)=f′(x)f(y)+f(x)f′(y)dydx Put x=0 and y=x ⇒f′(0+x)(1+dxdx)=f′(0)f(x)+f(0)f′(x)dxdx ⇒2f′(x)=2f(x)+f′(x) ⇒f′(x)=2f(x) ⇒∫f′(x)f(x)dx=∫2dx ⇒log|f(x)|=2x+c
Now, put x=0 ⇒log|f(0)|=2(0)+c ⇒log1=c⇒c=0 ∴log|f(x)|=2x ⇒f(x)=e2x
Integrating both sides loge3∫0[f(x)e−x]dx=loge3∫0[ex]dx=loge1∫00dx+loge2∫loge11dx+loge3∫loge22dx=0+loge2+2(loge3−loge2)=loge(92)
RHL=limx→0+[e2x]=1LHL=limx→0−[e2x]=0∴LHL≠RHL Limit does not exist.