The correct option is D 7
Since, g and f are inverse function
∴g∘f=I⇒g[f(x)]=x
Differentiating both the sides,
g′[f(x)]f′(x)=1
If f(x)=3, then
g′(3)⋅f′(x)=1 ...(1)
Given, k g′(3)=1 ...(2)
From (1) and (2), we have
k=f′(x) ...(3)
Now, f(x)=3
⇒x3−2x2+5x−1=3
⇒x3−2x2+5x−4=0
⇒(x−1)(x2−x+4)=0
⇒x=1
⇒f′(x)=6x2−4x+5
⇒f′(1)=6−4+5=7
∴k=f′(1)=7