A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0, then
A
f(x)f−1(x)=x2−4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(x)f−1(x)=x2−6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)f−1(x)=x2−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Af(x)f−1(x)=x2−4 f:R→Rf(x)f(y)−f(xy)=x+y∀x,yϵR∵f(1)>0Put,x=1&y=1⇒f(1)f(1)−f(1)=2⇒f2(1)−f(1)=0f2(1)−2f(1)+f(1)−2=0f(1)(f(1)−2)+1(f(1)−2)=0(f(1)+1)(f(1)−2)=0f(1)=−1&f(1)=2∴f(1)=2True.Put,y=12f(x)−f(x)=2+x⇒f(x)=2+x⇒y=x+2x=y−2f−1(x)=x−2⇒f(x)f−1(x)=(x+2)(x−2)f(x)f−1(x)=x2−4