wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A function f such that f(a)=f′′(a)=......f2n(a)=0 and f has a local maximum value b at x = a, if f (x) is


A

(x - a)2n+2

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

b - 1 - (x+1-a)2n+1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

b - (x - a)2n+2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

(x - a)2n+2 - b.

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

b - (x - a)2n+2


For local maximum or local minimum odd derivative must be equal to zero.
For local maxima, even derivative must be negative.
Since maximum value at x = a is b.

f(x)=b(xa)2n+2(f2n+2(a)=ve)
Hence (c) is the correct answer.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon