Let
F(x)=f(x)+f(−x)...(1) F(−x)=f(−x)+f(x)=F(x)∴F is even
G(x)=f(x)−f(−x)...(2)
G(−x)=f(−x)−f(x)=−G(x)
∴G is odd.
Now, adding (1) and (2),
F(x)+G(x)=2f(x)
∴f(x)=12[F(x)+G(x)]...(3)
where F(x) is even . G(x) is odd function .
For uniqueness : Let, if possible, there exist F1(x), an even function and G1(x), an odd function of x such that
f(x)=12[F1(x)+G1(x)]...(4)
Subtracting (4) from (3),we get
0=12[{F(x)−F1(x)}+{G(x)−G1(x)}]
∴F(x)−F1(x)=0 and G(x)−G1(x)=0
∴F1(x)=F(x) and G1(x)=G(x)
Hence the expression is unique.