The correct option is A sinx1−sinx
f(x)=sinx+∫x0f′(t)(2sint−sin2t)dt
put x=0, we get f(0)=0
now differentiating f(x), we get
⇒f′(x)=cosx+f′(x)(2sinx−sin2x)
⇒f′(x)=cosxsin2x−2sinx+1=cosx(sinx−1)2
by integrating f(x)=−1sinx−1+C
put x=0
f(0)=−10−1+C=0
⇒C=−1
Therefore, f(x)=−1sinx−1−1=sinxsinx−1
Ans: B